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Abstract

This paper describes a numerical method based on quasirandom
points for estimating the probability g(s,t) that vertices s 'and
t are connected in an undirected network G=(V,M) with [|. perfect
vertices and ' [M] randomly and independently failing edges. It is

shown that the error of estimate, as measured in terms of extreme discrepancy,

has a lower bound proportional to (log K)'P(S’t)I/Z/K for all possible

sampling sequences, but has an upper bound proportional to (log K)]P(S’t)]/K
for certain quasirandom sequences, where P(s,t)SM is the union of all
minimal pathsets between s and t and K is the number of replications.
By comparison, previously proposed sampling methods for this problem all

lead to a standard error of estimate proportional to K'”2 .

Moreover,

since quasirandom points are not random, the associated bounds are deterministic.
By using a minimal cutset R(s,t) with a certain special property

these lower and upper bounds become, respectively, (log K)lP(s,t)-R(s,t)l/Z/K
and (log K)lP(s,t)-R(s,t)]/K . This suggests that one choose a cutset

R(s,t) with maximal cardinality. Also, it is shown that the coefficient

of (log K)IP(SSE)-RISSE) 0 5o jaact if among all cutsets with maximal
cardinality one chooses the cutset with the largest failure probability.

The paper extends the results to more global measures of reliability and

to conditional measures of reliability. A discussion of the computation

time complexity of the proposed method is alsc included.
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Introduction

Consider an undirected network G = (V,M) of |V| vertices and
|[M| edges where the vertices always operate and where edge i has
probability LF of operating i ¢ M . Also assume that edges fail
independently. Suppose that one wants to compute g = g(s,t) , the
probability that s and t s,t eV are connected. Let X; = 1 if
edge i operates and Xy = 0 if edge i fails. Let ¢(x],...,x'M|; s,t)=1
if the vector (xl""’xlﬁl) admits at least one operating path

between s and t and ¢(x],...,lel; s,t) = 0 otherwise. Then

g(s,t) = 31 ...0] ¢(x1,....x|M| ; S,t) ,“ﬂ *i(1- -q; )1 7%

X 0 Xym1=0
s,t ¢ V
Since the computation time complexity of (1) is O(Z'MI) , direct
computation can only be performed for relatively small |M| . To overcome

the computational difficulty, at least three different approaches have
been proposed. The first concentrates on networks with special structure.
For example, Rosenthal (1977) describes a time-saving decomposition method
that applies to loosely connected networks. The effect of this approach

is to make the time complexity O(ZJ) where 0 <J < |M| . The second

concentrates on finding bounding inequalities for the reliability measure
at a cost that grows polynomially in [M| . For example, see Zemel (1980).

The third approach uses the Monte Carlo method and, in particular,
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stratified sampling techniques. See van Slyke and Frank (1972) and

Diegert and Diegert (1981) . In principle, the Monte Carlo method allows

an investigator to make a tradeoff between the cost of computation and R
the accuracy of computation. Although all methods of evaluation on !

computers lead to some numerical roundoff error, presumably one adopts
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methods of calculation that keep this error within tolerable bounds.

To this roundoff error the Monte Carlo method adds a sampling error

incurred by performing less than a total enumeration of all the possible
states for (xl"”’x|M|) when estimating the reliability measure g .
For K replications using independent random sampling, one estimates a
g with standard error proportional to l/K]/Z at a cost O0(K) for a
given graph G . For an experimental design that employs pure random
sampling, this error is vGTT:§77E . Provided that the technique is

judiciously used, the effect of stratified sampling is to reduce the

numerator of this quantity. But convergence with regard to K remains

proportional to llK]/2 .

The purpose of this paper is to describe how one can employ a numerical

method based on quasirandom points to accelerate the rate of convergence of

the error of the estimate of g . Quasirandom points is a specialized
topic related to the Monte Carlo method whose value for problem solution

is most evident in a multivariable setting. In this paper the operating

[«1)

statuses of the edges constitute this setting. Niederreiter (1978) contains
comprehensive survey of the theory of quasirandom points and Schmidt (1977)
provides rigorous proofs of all theorems related to quasirandom points

used in the present paper.

After introducing the relevant nomenclature, Section 1 describes

in detail the effect of pure random sampling in a Monte Carlo experiment

b [
e bt D

on the error of the estimate. It then describes the effect on this error
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of replacing pure random sampling by an experimental design based on
quasirandom points. In particular, when estimating g(s,t) , the probability

that nodes s and t are connected, it shows that, for given G , errors

have a deterministic lower bound proportioral to (log K)IP(s,t)I/Z/K for

.
4
.
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all possible sampling sequences, but have a deterministic upper bound
proportional to (log K)IP(S’t)]/K for certain quasirandom sequences,

where P(s,t) is the union of all pathsets between s and t.Jr Section 2

I X

shows how further improvement in the rates of convergence of the error is

possible by using information available about cutsets of the network. In

particular, it is shown that among all cutsets for which the paths from s
to t each contain exactly one edge in a cutset, using the cutset R(s,t)

with maximal cardinality leads to the most rapidly converging bound on the

error of estimate when quasirandom points are employed. Most notable

is the replacement of (log K)IP(s,t)l/Z and (log K)IP(s,t)] by
(log K)lP(S,t)-R(s,t)lIZ IP(s,t)-R(s,t)I

the bounds on convergence. Also, among all such cutsets, choosing the

and (log K) , respectively, in

one with the largest failure probability gives the smallest coefficient

'P(Sst)°R(S’t) I/K

on (log K) in the upper bound.

Section 3 extends the analysis to the estimation of other reliability

measures, some more global than g(s,t) and others involving conditionality.

The global measures include g(s,T) , the probability that vertex s is

connected to all vertices t ¢ T and h(s,T) , the mean number of s-t
connections t ¢ T . The conditional measures include g(s,t|v) , the
probability that s and t are connected given that edge v fails,
and g(v|s,t) , the probability that edge v fails given that s and t
are not connected. The first of these characterizes the criticality of v
whereas the second provides information about a potential source of the
failure to communicate between s and t .

Section 4 discusses computation time complexity for the proposed
method when using quasirandom points alone as in Section 1 and when

combined with a cutset as in Section 2.

Tan pathsets and cutsets are assumed minimal.
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1. Quasirandom Points

We begin by introducing a relatively general setting for assessing
error in a multivariable Monte Carlo experiment. Let IN denote the
N-dimensional unit hypercube [0,1]N » let Wy = n?gl[o,ei) with

0 <B; <1 1i=1,...,N denote an arbitrary hox in I, and let

N
U = {U;,¥y,...1 denote a sequence of points in Iy - Also, let

= 1a
AWy = M, B (12)
and
A(Wy3K) = number of points u;,...,u, that are in W, . (1b)
Then
K) = |K! 1K) - 1c
A(WK) = [KTTA(H3K) = A(Wy)] (1c)

measures the absolute error or discrepancy incurred in approximating
A(NN) by K']A(wN;K) . For a particular sequence u , one has the

extreme discrepancy

D, = D(N.K,u) = sup a(W,5K) (2a)
K wel, N
NT°N
and the LE_ discrepancy
T = TONK,u) = [ a2 3K de, .. a1 2 (2b)
0 0 ’

Whereas DK leads to a worst case assessment, TK leads to an averaging

of mean-square errors. Note that TK < DK .

With regard to the graph G , let

L{(s,t) = set of pathsets between s and t (33)
Pr(s,t) = pathset r between s and t , rel(s,t) (3b)
N(Pr(s,t)) = niepr(s’t)[OQQi) (3C)

and

B5(Prls:t)) = Mg (s,t) 10,0) (15 (4




'''''

I[a,b)(x) =1 if asx<b

0 otherwise ,

0 < ujy 1 and gj=(uij; ieL?eL(s,t)Pr(s’t)) j=1,2,... .
Here the subscript j denotes replication number. As we show shortly,
the selection of a generator for {uij} determines the nature of the
error incurred in estimating g by the Monte Carlo method. For
convenience of exposition we suppress the (s,t) arguments unless

they are needed to avoid ambiguity.

Observe that

- _m
B (UT.q P ) = i B,(P

j i=] j r ) r]s---srmGL . (5)

i
Finally, we make repeated use of the expansion

n n k
H,i:] (]-yi) = ] + ikzl(-]) % r:__] ym . (6)
Sm]<-..<mk5n r

Note that if Bj(Pr)=] for some rel then s and t are connected
on replication j . If anL[]'Bj(pr)]=] then s and t are not connected
on replication j . Then regardless of the sampling plan employed the

probability that s and t are connected on replication j is

35(5,8) = prlu, (85(P)<1)] (7)

and the conditional probability that s and t are connected is

g(S,t)'gj) = ]-nreL[]-Bj(Pr)]

gL ™y aj(uw P ).
r]<...<rmeL

m=1 i=1'r,

A;‘_&_L_L‘-
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As a first estimator of g we consider

- - S
O S T BRI

A A 1K
9 = gylsst) = ¢ 15y 9(sstlyy) (3a)

From (1), (4) and (5) this estimator can be written equivalently as

(TP L} '1 :‘.‘&.- L.l.l »

A 1 ¢IL] m+1 m
9 = 7 Loy (-1) AUS_ WP )35 K) (9b)
1 m
so that
A Ll m+1 m
9,-9 = ) __, (-1) AU WP )5 K) . 10a
K m=1 Z]<...<rmeL i=1 ’ ) (102)

From (2a) one has the extreme discrepancy bound

* Ll m
1g,-gl <D (G,K,u) = J'" D(IWT . P 1,K,u)
K 2m‘1 E <..‘<r 6L 1-] ri (]Ob)
1 m
and from (3) the L2 discrepancy bound
2 1 *
IL| _ (10c¢)
= 2,,,:12 T('Ui=] PI" |9K9u) .
Fy<e..<r el j
m
Observe tnat P=L46L Pr is the set of all arcs in the athset L .
If "ij ieP j=1,...,K in (4) were independent random variables drawn
from the uniform distribution on [0,1) , then GK would be unbiased f
with var GK=g(1-g)/K . Since (var GK)]/Z , the standard error of QK , €
- * - X
converges as K 172 » D (G,K,u) cannot converge faster than K /2 ]
for pure random sampling. In fact, for N dimensions ;
k: . /Z< D(N,K,u) , ]
I e L (1)
- > og locg X
.
if a result due to Chung (1949) for N=1 and to Kiefer (1961) for N > 1 .
»
he

PR PSP U Wy W TN DU T U YL TN WP D
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Also, Hammersley (1960) shows that for pure random sampling
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How Well Can a Numerical Method Perfonm?

i- We now turn to an assessment of how well one can expect any numerical

o s ARSMNRS A

.o method to perform with regard to convergence as a function of K using the
L * *

ecror bounds D (N,K,u) and T (N,K,u) . Clearly, one would 1ike to choose 4
the vector sequence u so that convergence is as rapid as possible. The s ﬂ

1 through 3 provide some useful insights.

Theorem 1 (van Aardanne-Ehrenfest 1945). For any infinite sequence u w

N=1 #
]
lim KD(N,K,u) = = (12) ;
K'*°° 9
i
Theorem 2 (Roth 1954)., For any sequence u of K points with N > 2 i
1
T(N.K,u) > GNK']nogZK)(N‘”/2 (13) 4
o
where f
GN - 2'4N(N-])(]'N)/2 o
Theorem 3 (Roth 1954) . For any infinite sequence u with N > 1 '
-1 N/2
T(NK,u) = 64K (Tog,K)V% (14)
Also, Roth (1980) has shown that there exists a sequence u for which

the equality holds in (13). ‘
Since it is usually more convenient to use infinite sequences in E
practice, the result in (14) is most applicable. Therefore, for a {

. * * ' |P|/2
given graph G one has D (G,K,u) =2 T (G,K,u) 2 GIPI(]og K) /K where
G}Pl is a function of |P| only. Note the retardation on convergence

due to |[P] and that this result holds for any sequence, random or

nonrandom.

R TP PPN PRI VLY LS P-PS VEF LY
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Finding a Sequence

Many sequences u are known to give faster convergence than pure 3
random sampling. Of these at least two nonrandom sequences have the ?;
best known upper bound ‘;
DIN,K,u) s Cy(Tog K)V/K (15) 3
CN being an increasing function of M and the particular sequence. ﬂ
0f these the one due to Halton (1960) is the most accessible. The other J
is due to Sobol (1967) and is described in Niederreiter (1978). ,i
Let p > 2 be an integer. Then every non-negative integer n has Ei

an expansion of the form

m i .
n = Zi=0 ap a; € {0,1,...,p~1} 0 <i<m (16)

where m = L]ogan . Moreover, this p-adic representation is unique.

Corresponding to (18), one has the radical inverse function

_ el -i-1
¢p(n) = zi=0 aip .

The Halton sequence is {¢p (n+j),...,0. (n+j); j=1,....K} where Pys--esPy
1

PN
are the first N prime numbers. These points are uniformly distributed

in IN . Actually, all that is needed to guarantee uniformity of distribution

is that Pys--oPy be pairwise coprime. Note that for given n the sequence

|

is not random. Since Halton also shows T(N,K,u) < C& (1og K)N/K for this
sequence, the upper bounds on D(N,K,u) and T(N,K,u) . apart from CN

*
and C& , are the same. Hereafter we concentrate on D (G,K,u) . In the

*
present case D (6,K,u) < (2/t1-1) C,py (109 K)'PI/K . Halton and Smith (1964)

describe an algorithm for generating the Halton sequence. By way of

- _..4.____-_.‘:..‘_"..'.. PO

application Fishman (1983) shows the substantial benefit of using the i
Halton sequence to estimate the distribution functions of job completion L

time and shortest path time in a stochastic activity network with 18 arcs.
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2. Using Cutsets

As just shown the rate of convergence of the upper bound on D*(G,K,u)
depends on (log K)'P(S’t)I where |P{s,t)| is the dimension used for
sampling. If one can reduce this dimension, then the bound on
convergence can be improved. When they apply, series and parallel

reductions and polygon-to-chain reductions (Satyanarayana and Wood 1982)

induce lower dimensionality. This section describes an alternative
method of reducing the dimensionality of sampling by using cutsets.
By a cutset R(s,t) we mean a set of edges that when inoperative
disconnects s and t with probability 1 . Here we need a more
restricted cutset. Assume that no pathset connecting s and t
contains more than one edge in the cutset. At least one such cutset

is guaranteed to exist in G .

Let

R{(s,t) = a cutset of the network for s and t . (18a)
Lr(s,t) = set of pathsets that use arc r reR(s,t). (18b)
R(s,t) = R(s,t) NP (s,t)  rel(s,t) . (18c)

Note that R(s,t) = UreL(s,t)Rr(s’t) and that L(s,t) = zreR(S,t) L.(s,t) .

Suppose that on replication j one chooses values only for
u.(P-R)={uij; ie(P-R)} . Then the conditional probability that s and
~J

t are connected is

9(s,tly;(P-R)) 1-Hr€R{1-qr[1-nm€Lr(1-Bj(Pm-Rm))] }

T el1-0, Elty‘(-])m )

x L.

Bj(uri":](Pri-Rri))] :

<...<r ¢l
1 mEr
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As a second estimator of g consider
8 = ¥ 15, als.tiu.(P-R)) . (20a)
K K j=] ? ~J

After further expansion and rearrangement of terms in (19) one can write

(20a) equivalently as

~ 1 ¢iLl m+] m
9 = v L-_1(-1) A(US_, W(P_ (s,t) - R
K = K Ln=1 'Z,]('__(rmd i=1 WP (s:t) - R (5.0))
(20b)
m
X A(LJi=] N(Rri(s’t))) .
For pure random sampling with independent replications, EK is
~ A
unbiased and has var g, < var g, .
For the more general setting for u the error bound on §K in
terms of extreme discrepancy is
~ *%
B9l < 0 (6,Ku) =TIt g
r‘.|<...<rmeL (21)
m m
)«Ji:]w(Rr')) D(|L)i=] (PY--RP-)|’K’U)
i i i
This expression provides several useful insights. In particular,
unlike the earlier sampling plan based on all |[P| arcs, the cutset
approach enables one to use the structure of the network at hand to
advantage. First, using the Halton or a 1ike sequence gives
1 ¢lL] m
D**(6,K,u) < 77 -1 ) MU 5.1 W(R.))
K fm=1 r]<...<rm€L i=1 ri
m
[U5 (P =R _)I
“c . (log k) =1 ryry (22)
|L’i=](PT--RT-)‘

1 1

1 (,IL [P-R|
< K (2 '])q*clp_R,(1°g K)
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where

qs = max (q,) .
ieR

Note that choosing R to be the cutset of maximal cardinality makes

(log K)IP'RI/K converge most rapidly. Moreover, (22) also suggests

that among cutsets with maximal cardinality one should select the one

for which A(W(R)) 1is least. Note that 1-A(W(R)) is the probability

that the cutset R fails. Although identifying cutsets with maximal
cardinality is not a trivial problem, it is conceivable that one can

select a cutset of sufficiently large cardinality to improve the convergence
rate substantially. Sigal, Pritsker and Solberg (1980) propose the use

of this cutset when Monte Carlo methods are used to estimate the distribution
function of the shortest path time in a stochastic activity network.

Also see Fishman (1983).

3. Other Reliability Measures

We now extend the analysis to other measures of reliability. Suppose
one wants to estimate g(s,T) , the probability that vertex s 1is connected
to all vertices t ¢ T . Observe that

g(s,T) = 1-pr(U; ; (s and t are not connected))
= 1- ZlTl('])m+]Z pr«‘?zl (s and t. are not connected))
m=1 to<...<t T !
1 m (23)

Moreover, the conditional probability for replication j is

9(s,Thus) = M 7 01-np g (6, 4) (-8 (PL(s,8))] . (24)

As a first estimate of g(s,T) , one has

G (s,T) = %-z§=] 9(s.Tly;) (25)
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Expansion by means of (6) shows that IGK(s,T) - g(s,T)! has upper bound
proportional to (log K)N/K , if the Halton or a like sequence is used,
where
N N = lug 1 P(s,t)] < M}, (26)
A% Note that for T=V-{s} g(s,T) denotes the probability that all nodes
are connected.
The cutset approach to the estimation of g(s,T) is somewhat more
complex. Recall that R(s,t) denotes a cutset with regard to vertices
s and t . Now assume that the cutsets {R(s,t); teT} are identical.
Denote this cutset by R(s,T) and let P(s,T) = UteTP(S‘t) . At least
one such cutset must exist. Now the conditional probability that s is

connected to all nodes in T on replication j is

AL S S
- 1S <tpe (27

L m
{nreR(S,T){]-qY‘[1-ni=] nkeLr(S’ti)(]-BJ‘(Pk(s )t.i )'Rk(ssti)))]}} .
Here the quantity in the outer braces is the conditional probability that
s is connected to nodes t1""’tm . The justification for the form of

(27) derives from the inclusion-exclusion expansion of (23). As a second

estimate of g(s,T) , one has

G(5:T) = g L.y §(s.TIuy(P(s,T) - R(s,T))) (28)

for which |§K(s,T) - g(s,T)| has upper bound proportional to (log K)N/K

for the Halton sequence, where

N = U, P(s,t) | - IR(s,T)I . (29)

Now suppose that one wants to estimate h(s,T) , the mean number

of s-t (teT) connections. Then one has

GK(SsT) = zteT gK(S’t) (30a)




k'.-'."':‘u'.' b B
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and

h(s:T) = I, 7 gy(sat) - (30b)

A
For lhK(S,T) - h(s,T)] the exponent of log K in the upper bound is

N = sup [P(s,t)]
teT

and for lﬁK(s,t) - h(s,T)| it is
N = sup |P(s,t) - R{s,t)]
teT
The estimation of at least two alternative conditional reliability
measures also are of interest. First, suppose one wants to estimate
h(s,t{v) , the probability that s and t are connected given that edge
v ¢ P(s,t) has failed. This measure characterizes the criticality of v
to the s-t connection. Analogous to {9a) one has with the (s,t)

argument suppressed

hg(sstiv) = K(T}E;T Ia g 1) (Uyg) -y [1-85(PI) . (31)

For the cutset approach with v ¢ R(s,t) one has
Ro(SatIv) = pp—r T o 1 (u )
K'\>? K(T-q,] 43=1 (qv’l) vj (32a)

x (1-n, ql-a, (11 | (1-B(P-RIN )
r

and for v € R(s,t)

K

Bl t1v) = § By (1= g [1-0,(1-1 (18(P-RID (32b)

r#v

The error bounds for A(s,t|v) and h(s,t|v) remain the same as those

for §(s,t) and g(s,t) respectively.

- ‘-'—"-"'“"W““\‘I
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The second conditional quantity of interest is h(vis,t) , the
probability that edge v fails (v ¢ P(s,t)), given that s and t do not .
communicate. Knowledge of this quantity can be helpful in detection problems.

- Here .
DAy (s,t1v)1(1-q,) :

A
h(vis,t) =
: 1-§,(s,t) (33 "

: and
’ 1-h, (s, 1-
B (vist) [ .K(i tiv)]J(1-q,) .
1'9K(S,t) (34)

Expressions (33) and (34) call for more careful analysis than (32a) and (32b)

do. Whereas in the case of pure random sampling GK(s,tlv) and FK(s,tlv)

are unbiased estimators, QK(vls,t) and HK(vls,t) are biased estimators, X
at least for finite K . This is a consequence of both numerator and
denominator in each being random variables. For the approach based on

quasirandom points one may elect to assess errors for
A
100-h (s,t1v)1(1-q,) - h(Vls,t)[l-SK(s.t)]l and

“ ID1-Ry(s,t1v)1(1-a,) - h(vIs,t)[1-G(s,t)]| which have K '(log K)'P(s:t)]

and K- 1(10g k) IP(sst)-R(s,t)|

, respectively, in their upper bounds for
the Halton and 1ike sequences. Perhaps, it would be more direct to assess t
merely the errors for [1-QK(s,t|v)](1-qv) and [1-FK(s,t|v)](1-qv) for

é all v of interest, since the denominators remain the same for all v e P(s,t) .

4. Time Complexity Considerations

As mentioned earlier, the fact that computation of g(s,t) in (1) has
time complexity 0(2|M‘) motivates one to consider methods of approximation;

: in particular, Monte Carlo methods. Therefore, it is only appropriate that

we provide a comparative characterization cf the time complexity of GK(s,t)

in (9a), §(s,T) in (25), R(s,T) in (3ca), Ay(s,tiv) in (31), Gyls.t)
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in (20a), gy (s.T) in (28), hy(s,T) in (30b) and Re(sstiv) in (32).
Firstly and most importantly, although these cited expressions are convenient
for error analysis, they are not intended for literal computation. We

illustrate this point for §, = QK(s,t) .

Let
xj = anL(S’t)[l-Bj(Pr(S,t))] (35)
so that
A___]_K
G =T-glia % - (36)

To compute Xj using (35) one needs to know L(s,t) and {Pr(s,t); rel{s,t)},
a burdensome requirement for a highly redundant network. Moreover, determining
the status of each edge in P(s,t) requires |P(s,t)} steps and the
straightforward computation of Bj(Pr(s,t)) requires IPr(s,t)l steps so
that Xj has complexity O(iP{s,t}i) + o} rcL(s,t)]Pr(s’t)I)

For this s-t connectedness problem a considerably more efficient
approach exists for computing Xj . Basically if s and t are connected
on replication j then Xj=0 . Otherwise Xj=1 . To check for connectedness
in this single source-single sink setting one can use a relatively straight-
forward labeling algorithm which requires no more than [V| steps. For
example, see the discussion of Dykstra's algorithm in Aho, Hopcroft and
Uliman (1974). As a result the time complexity for (36) is
O(KIP(s,t)|) + O(KIV|) . Note that explicit knowledge of L(s,t) and
{Pr(s,t); rel(s,t)} 1is not required. Also note that this result applies
to QK(s,tlv) in (31) , as well for each v .

The (s,T) single source-multiple sink problem is slightly less
routine. Again, labeling algorithms are known that can determine the

connectedness of a single source s to all sinks t in T in no more
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than (V| steps. Using such an algorithm aives ﬁK(s,T) with time

complexity O(KN) + O(KIV]) where

N =y g Pls,t)l . (37)

The same result holds for ﬁk(s,T) .
When we turn to the cutset approach, the available results on complexity
are mixed at present. Let V(s,t) denote the set of vertices associated

with the cutset R(s,t) and consider the computation of EK(s,t) . Let

Xps = nmeLr(s,t) [l-aj(Pm(s,t)-Rm(s,t))] reR(s,t) (38)

so that (20a) is algebraically equivalent to

~ 1 oK
!

I © X Lj= nreR(s,t)[]’qrxrj] . (39)

Now there is a labeling algorithm for which the time complexity of
determining the s-v connections for all v « V(s,t) is O0([VI) and also
the time complexity of determining the t-v connections for all v e V(s,t)
is 0(IV]) . Since the status of the s-v and v-t connections is all
that is necessary for evaluating xrj in (38) this computation has time
complexity O(|P(s,t) - R(s,t)I) + O(IV|) . Therefore, §K has time
complexity O(K{P(s,t) - R(s,t)]) + O(KIV|) . A little thought shows

a similar analysis for the elements of ﬁK(s,T) . However, no comparable

complexity has been established for EK(S,T) . This remains a topic for

continued research.
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